1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::mpsc::channel;
use std::sync::{Arc, Mutex};
use std::thread::ThreadId;

use crate::access::vec::ReflectVec;
use crate::access::{
    derive::{ReflectStruct, Struct, StructKind},
    iter::ReflectIter,
    Access,
};
use crate::node_tree::{NodeInfo, NodeTree, PtrMeta, Wrap};

type ObjPtr = (usize, usize);

/// `Reflector` operates on types implementing `Access`. Some of its methods are being called
/// automatically from `#[derive(Interact)]` impls. It provides a thread-safe context, because on
/// the extreme case, where it is possible that reflection is done via indirection using multiple
/// process threads (see `ReflectIndirect`).
pub struct Reflector {
    limit: usize,
    used: AtomicUsize,

    seen: Mutex<HashMap<ObjPtr, PtrMeta>>,
    synced_thread: ThreadId,
}

impl Reflector {
    pub fn new(limit: usize) -> Arc<Self> {
        Arc::new(Self {
            limit,
            used: AtomicUsize::new(0),
            seen: Mutex::new(HashMap::new()),
            synced_thread: std::thread::current().id(),
        })
    }

    pub fn reflect_struct(
        a_self: &Arc<Self>,
        desc: &Struct,
        p_struct: &dyn ReflectStruct,
        anon: bool,
    ) -> NodeTree {
        let meta = try_seen_dyn!(p_struct, a_self);

        match &desc.kind {
            StructKind::Unit => {
                NodeInfo::Leaf(std::borrow::Cow::Borrowed(desc.name)).with_meta(meta)
            }
            StructKind::Tuple(n) => {
                let mut v = vec![];

                for i in 0..*n {
                    if a_self.limit <= a_self.used.load(Ordering::Relaxed) {
                        v.push(NodeInfo::Limited.into_node());
                        break;
                    }

                    let reflect_node = Self::reflect(a_self, p_struct.get_field_by_idx(i).unwrap());
                    v.push(reflect_node);
                }

                let grouped =
                    NodeInfo::Grouped('(', Box::new(NodeInfo::Delimited(',', v).into_node()), ')');

                let elem = if !desc.name.is_empty() && !anon {
                    NodeInfo::named(desc.name, grouped.into_node())
                } else {
                    grouped
                };

                elem.with_meta(meta)
            }
            StructKind::Fields(fields) => {
                let mut result = vec![];
                let mut items = vec![];
                let mut missing_keys = false;

                for field in *fields {
                    if a_self.limit <= a_self.used.load(Ordering::Relaxed) {
                        missing_keys = true;
                        break;
                    }

                    a_self.used.fetch_add(1, Ordering::SeqCst);
                    items.push((field, p_struct.get_field_by_name(field).unwrap()));
                }

                for (key, value) in items.into_iter() {
                    let node = {
                        if a_self.limit <= a_self.used.load(Ordering::Relaxed) {
                            NodeInfo::Limited.into_node()
                        } else {
                            Self::reflect(a_self, value)
                        }
                    };

                    result.push(
                        NodeInfo::Tuple(
                            Box::new(NodeInfo::Leaf(std::borrow::Cow::Borrowed(key)).into_node()),
                            ":",
                            Box::new(node),
                        )
                        .into_node(),
                    )
                }

                if missing_keys {
                    result.push(NodeInfo::Limited.into_node());
                }

                let grouped = NodeInfo::Grouped(
                    '{',
                    Box::new(NodeInfo::Delimited(',', result).into_node()),
                    '}',
                );

                let elem = if !desc.name.is_empty() && !anon {
                    NodeInfo::named(desc.name, grouped.into_node())
                } else {
                    grouped
                };

                elem.with_meta(meta)
            }
        }
    }

    pub fn reflect_map(
        a_self: &Arc<Self>,
        iter: &mut dyn ReflectIter<(&dyn Access, &dyn Access)>,
        name: &'static str,
    ) -> NodeTree {
        let meta = try_seen_dyn!(iter, a_self);

        let mut result = vec![];
        let mut items = vec![];
        let mut missing_keys = false;

        while let Some((key, value)) = iter.reflect_next() {
            if a_self.limit <= a_self.used.load(Ordering::Relaxed) {
                missing_keys = true;
                break;
            }

            a_self.used.fetch_add(1, Ordering::SeqCst);
            items.push((Self::reflect(a_self, key), value));
        }

        for (key, value) in items.into_iter() {
            let node = {
                if a_self.limit <= a_self.used.load(Ordering::Relaxed) {
                    NodeInfo::Limited.into_node()
                } else {
                    Self::reflect(a_self, value)
                }
            };

            let reflect_node = NodeInfo::Tuple(Box::new(key), ":", Box::new(node));
            result.push(reflect_node.into_node());
        }

        if missing_keys {
            result.push(NodeInfo::Limited.into_node());
        }

        NodeInfo::named(
            name,
            NodeInfo::Grouped(
                '{',
                Box::new(NodeInfo::Delimited(',', result).into_node()),
                '}',
            )
            .into_node(),
        )
        .with_meta(meta)
    }

    pub fn reflect_set(
        a_self: &Arc<Self>,
        iter: &mut dyn ReflectIter<&dyn Access>,
        name: &'static str,
    ) -> NodeTree {
        let mut v = vec![];
        let meta = try_seen_dyn!(iter, a_self);

        while let Some(member) = iter.reflect_next() {
            if a_self.limit <= a_self.used.load(Ordering::Relaxed) {
                v.push(NodeInfo::Limited.into_node());
                break;
            }

            let member = Self::reflect(a_self, member);
            v.push(member);
        }

        NodeInfo::named(
            name,
            NodeInfo::Grouped('{', Box::new(NodeInfo::Delimited(',', v).into_node()), '}')
                .into_node(),
        )
        .with_meta(meta)
    }

    pub fn reflect_vec(a_self: &Arc<Self>, vec: &dyn ReflectVec, name: &'static str) -> NodeTree {
        let mut v = vec![];

        let meta = try_seen_dyn!(vec, a_self);

        for i in 0..vec.get_len() {
            if a_self.limit <= a_self.used.load(Ordering::Relaxed) {
                v.push(NodeInfo::Limited.into_node());
                break;
            }

            let reflect_node = Self::reflect(a_self, vec.get_item(i).unwrap());
            v.push(reflect_node);
        }

        let item = NodeInfo::Grouped('[', Box::new(NodeInfo::Delimited(',', v).into_node()), ']');

        let item = if !name.is_empty() {
            NodeInfo::named(name, item.into_node())
        } else {
            item
        };

        item.with_meta(meta)
    }

    pub fn seen_ptr(a_self: &Arc<Self>, obj_ptr: ObjPtr) -> Result<NodeTree, PtrMeta> {
        let mut seen = a_self.seen.lock().unwrap();
        match seen.entry(obj_ptr) {
            Entry::Occupied(entry) => {
                let entry = entry.get();
                entry.fetch_add(1, Ordering::SeqCst);

                Ok(NodeTree::new(NodeInfo::Repeated, Some(Wrap(entry.clone()))))
            }
            Entry::Vacant(entry) => {
                let meta = Arc::new(AtomicUsize::new(1));
                entry.insert(meta.clone());
                Err(meta)
            }
        }
    }

    pub fn reflect(a_self: &Arc<Self>, access: &dyn Access) -> NodeTree {
        use crate::Reflect::*;

        let immut_access = access.immut_access();

        let reflect_node = match immut_access.reflect {
            Direct(v) => v.immut_reflector(a_self),
            Indirect(access) => {
                let (sender, receiver) = channel();
                let b_self = a_self.clone();

                access.indirect(Box::new(move |access| {
                    let res = Self::reflect(&b_self, access);
                    let _ = sender.send(res);
                }));

                if a_self.synced_thread == std::thread::current().id() {
                    receiver.recv().unwrap()
                } else {
                    NodeInfo::Hole(Box::new(receiver)).into_node()
                }
            }
        };

        a_self.used.fetch_add(1, Ordering::SeqCst);
        reflect_node
    }
}